Correction: A Novel Artificial MicroRNA Expressing AAV Vector for Phospholamban Silencing in Cardiomyocytes Improves Ca2+ Uptake into the Sarcoplasmic Reticulum

نویسندگان

  • Tobias Größl
  • Elke Hammer
  • Sandra Bien-Möller
  • Anja Geisler
  • Sandra Pinkert
  • Carsten Röger
  • Wolfgang Poller
  • Jens Kurreck
  • Uwe Völker
  • Roland Vetter
  • Henry Fechner
چکیده

In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB) expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr) improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr) directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr) from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM) over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR) vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory role of ovarian sex hormones in calcium uptake activity of cardiac sarcoplasmic reticulum.

Alterations in the intracellular Ca2+ handling in cardiomyocytes may underlie the cardiac dysfunction observed in the ovarian sex hormone-deprived condition. To test the hypothesis that ovarian sex hormones had a significant role in the cardiac intracellular Ca2+ mobilization, the sarcoplasmic reticulum (SR) Ca2+ uptake and SR Ca2+-ATPase (SERCA) activity were determined in 10-wk ovariectomized...

متن کامل

Improvement of defective sarcoplasmic reticulum Ca2+ transport in diabetic heart of transgenic rats expressing the human kallikrein-1 gene.

The bradykinin-forming enzyme kallikrein-1 is expressed in the heart. To examine whether contractile performance and sarcoplasmic reticulum Ca2+ transport of the diabetic heart can be rescued by targeting the kallikrein-kinin system, we studied left ventricular function and sarcoplasmic reticular Ca2+ uptake after induction of streptozotocin-induced diabetes mellitus in transgenic rats expressi...

متن کامل

Targeted inhibition of sarcoplasmic reticulum CaMKII activity results in alterations of Ca2+ homeostasis and cardiac contractility.

Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, ...

متن کامل

Calcium cycling proteins and heart failure: mechanisms and therapeutics.

Ca2+-dependent signaling is highly regulated in cardiomyocytes and determines the force of cardiac muscle contraction. Ca2+ cycling refers to the release and reuptake of intracellular Ca2+ that drives muscle contraction and relaxation. In failing hearts, Ca2+ cycling is profoundly altered, resulting in impaired contractility and fatal cardiac arrhythmias. The key defects in Ca2+ cycling occur a...

متن کامل

Targeting phospholamban by gene transfer in human heart failure.

BACKGROUND Myocardial cells from failing human hearts are characterized by abnormal calcium handling, a negative force-frequency relationship, and decreased sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) activity. In this study, we tested whether contractile function can be improved by decreasing the inhibitory effects of phospholamban on SERCA2a with adenoviral gene transfer of antisense phospho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014